The J-pole antenna, more properly known as the J antenna, was first invented by Hans Beggerow in 1909 for use in Zeppelin airships. Trailed behind the airship, it consisted of a single element, one half wavelength long radiator with a quarter wave parallel feedline tuning stub. This concept evolved to the J configuration by 1936 attaining the name J Antenna by 1943.
The J-pole antenna is an end-fed omnidirectional half-wave antenna that is matched to the feedline by a quarter wave parallel transmission line stub of Lecher system form. Matching to the feed-line is achieved by sliding the connection of the feedline back and forth along the stub until an impedance match is obtained. Being a half-wave antenna, it provides a small gain over a quarter-wave ground-plane antenna.
Primarily a dipole, the J-pole antenna exhibits a mostly circular pattern in the H plane with an average free-space gain near 2.2 dBi (0.1 dBd). Measurements and simulation confirm the quarter-wave stub modifies the circular H-plane pattern shape increasing the gain slightly on the side of the J stub element and reducing the gain slightly on the side opposite the J stub element. At right angles to the J-stub, the gain is closer to the overall average: about 2.2 dBi (0.1 dBd). The slight increase over a dipole's 2.15 dBi (0 dBd) gain represents the small contribution to the pattern made by the current imbalance on the matching section. The pattern in the E plane reveals a slight elevation of the pattern in the direction of the J element while the pattern opposite the J element is mostly broadside. The net effect of the perturbation caused by quarter-wave stub is an H-plane approximate gain from 1.5 to 2.6 dBi (-0.6 dBd to 0.5 dBd).
Like all antennas, the J-pole is sensitive to electrically conductive objects in its induction fields (aka reactive near-field region ) and should maintain sufficient separation to minimize these near field interactions as part of typical system installation considerations. The quarter wave parallel transmission line stub has an external electromagnetic field with strength and size proportional to the spacing between the parallel conductors. The parallel conductors must be kept free of moisture, snow, ice and should be kept away from other conductors including downspouts, metal window frames, flashing, etc. by a distance of two to three times the spacing between the parallel stub conductors. The J-Pole is very sensitive to conductive support structures and will achieve best performance with no electrical bonding between antenna conductors and the mounting structure.