In probability theory, Slepian's lemma (1962), named after David Slepian, is a Gaussian comparison inequality. It states that for Gaussian random variables X=(X1,…,Xn){\displaystyle X=(X_{1},\dots ,X_{n})} and Y=(Y1,…,Yn){\displaystyle Y=(Y_{1},\dots ,Y_{n})} in Rn{\displaystyle \mathbb {R} ^{n}} satisfying E[X]=E[Y]=0{\displaystyle E[X]=E[Y]=0},