*** Welcome to piglix ***

Slaframine

Slaframine
Slaframine.svg
Names
IUPAC name
6-Aminooctahydroindolizin-1-yl acetate
Identifiers
3D model (JSmol)
ChemSpider
Properties
C10H18N2O2
Molar mass 198.27 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Slaframine is an indolizidine alkaloidal mycotoxin that generally causes salivation (slobbers) in most animals. It is usually produced by the fungus Rhizoctonia leguminicola. It is a common fungal pathogen of red clover (Trifolium pratense) that causes black patch disease in the plant. Slaframine has the molecular formula C10H18N2O2. The different environmental condition promotes the growth of the Rhizoctonia leguminicola fungus. For example, wet and humid weather are the favorable environmental condition for the growth of the fungus and production of slaframine. Legume hays contaminated with slaframine causes slobber syndrome and the various animals are sensitive to its effects.

In the late 1940s and 1950s in Midwestern United States, various agricultural experiment stations revealed the outbreaks of salivation in the cattle. In 1956, the first case of fungal contamination of red clover with Rhizoctonia leguminicola was reported which was mainly associated with a pasture disease called black patch. This was so called because it derives its name from the appearance of affected areas in the field. Most of these cases were associated with the feeding of second-cutting red clover hay. Another serious outbreak of slobbers occurred in a herd of horses in the fall of 1979 near High Point, North Carolina. This was caused by a shipment of high-quality second-cutting red clover-orchard grass hay from a usual supplier in West Virginia. In 2010, the slaframine toxin, or "slobber toxin" was also observed in Central Kentucky because of the wet spring weather and abundant clover growth.

Liver is the major site of slaframine metabolism where it has been suggested that slaframine is metabolized in the liver by a microsomal flavoprotein oxidase to the ketoimine metabolite consisting of quaternary nitrogen separated from an acetate ester by two carbon atoms (Figure 2).


...
Wikipedia

...