*** Welcome to piglix ***

Skinner Unaflow engine


The uniflow type of steam engine uses steam that flows in one direction only in each half of the cylinder. Thermal efficiency is increased in the compound and multiple expansion types of steam engine by separating expansion into steps in separate cylinders; in the uniflow design, thermal efficiency is achieved by having a temperature gradient along the cylinder. Steam always enters at the hot ends of the cylinder and exhausts through ports at the cooler centre. By this means, the relative heating and cooling of the cylinder walls is reduced.

Steam entry is usually controlled by poppet valves (which act similarly to those used in internal combustion engines) that are operated by a camshaft. The inlet valves open to admit steam when minimum expansion volume has been reached at the start of the stroke. For a period of the crank cycle, steam is admitted, and the poppet inlet is then closed, allowing continued expansion of the steam during the stroke, driving the piston. Near the end of the stroke, the piston will uncover a ring of exhaust ports mounted radially around the centre of the cylinder. These ports are connected by a manifold and piping to the condenser, lowering the pressure in the chamber below that of the atmosphere causing rapid exhausting. Continued rotation of the crank moves the piston. From the animation, the features of a uniflow engine can be seen, with a large piston almost half the length of the cylinder, poppet inlet valves at either end, a camshaft (whose motion is derived from that of the driveshaft) and a central ring of exhaust ports.

Uniflow engines potentially allow greater expansion in a single cylinder without the relatively cool exhaust steam flowing across the hot end of the working cylinder and steam ports of a conventional "counterflow" steam engine during the exhaust stroke. This condition allows higher thermal efficiency. The exhaust ports are only open for a small fraction of the piston stroke, with the exhaust ports closed just after the piston begins traveling toward the admission end of the cylinder. The steam remaining within the cylinder after the exhaust ports are closed is trapped, and this trapped steam is compressed by the returning piston. This is thermodynamically desirable as it preheats the hot end of the cylinder before the admission of steam. However, the risk of excessive compression often results in small auxiliary exhaust ports being included at the cylinder heads. Such a design is called a semi-uniflow engine.

Engines of this type usually have multiple cylinders in an in-line arrangement, and may be single- or double-acting. A particular advantage of this type is that the valves may be operated by the effect of multiple camshafts, and by changing the relative phase of these camshafts, the amount of steam admitted may be increased for high torque at low speed, and may be decreased at cruising speed for economy of operation. Alternatively, designs using a more-complex cam surface allowed the varying of timing by shifting the entire camshaft longitudinally compared to its follower, allowing the admission timing to be varied. (The camshaft could be shifted by mechanical or hydraulic devices.) And, by changing the absolute phase, the engine's direction of rotation may be changed. The uniflow design also maintains a constant temperature gradient through the cylinder, avoiding passing hot and cold steam through the same end of the cylinder.


...
Wikipedia

...