In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.
There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms. More briefly, one may refer to quadratic, skew-quadratic, symmetric, and skew-symmetric forms, where "skew" means (−) and the * (involution) is implied.
The theory is 2-local: away from 2, ε-quadratic forms are equivalent to ε-symmetric forms: half the symmetrization map (below) gives an explicit isomorphism.
ε-symmetric forms and ε-quadratic forms are defined as follows.
Given a module M over a *-ring R, let B(M) be the space of bilinear forms on M, and let T: B(M) → B(M) be the "conjugate transpose" involution B(u,v) ↦ B(v,u)*. Since multiplication by −1 is also an involution and commutes with linear maps, −T is also an involution. Thus we can write ε = ±1 and εT is an involution, either T or −T (ε can be more general than ±1; see below). Define the ε-symmetric forms as the invariants of εT, and the ε-quadratic forms are the coinvariants.