Single domain, in magnetism, refers to the state of a ferromagnet in which the magnetization does not vary across the magnet. A magnetic particle that stays in a single domain state for all magnetic fields is called a single domain particle (but other definitions are possible; see below). Such particles are very small (generally below a micrometre in diameter). They are also very important in a lot of applications because they have a high coercivity. They are the main source of hardness in hard magnets, the carriers of magnetic storage in tape drives, and the best recorders of the ancient Earth's magnetic field (see paleomagnetism).
Early theories of magnetization in ferromagnets assumed that ferromagnets are divided into magnetic domains and that the magnetization changed by the movement of domain walls. However, as early as 1930, Frenkel and Dorfman predicted that sufficiently small particles could only hold one domain, although they greatly overestimated the upper size limit for such particles. The possibility of single domain particles received little attention until two developments in the late 1940s: (1) Improved calculations of the upper size limit by Kittel and Néel, and (2) a calculation of the magnetization curves for systems of single-domain particles by Stoner and Wohlfarth. The Stoner–Wohlfarth model has been enormously influential in subsequent work and is still frequently cited.
Early investigators pointed out that a single-domain particle could be defined in more than one way. Perhaps most commonly, it is implicitly defined as a particle that is in a single-domain state throughout the hysteresis cycle, including during the transition between two such states. This is the type of particle that is modeled by the Stoner–Wohlfarth model. However, it might be in a single-domain state except during reversal. Often particles are considered single-domain if their saturation remanence is consistent with the single-domain state. More recently it was realized that a particle's state could be single-domain for some range of magnetic fields and then change continuously into a non-uniform state.