Names | |
---|---|
IUPAC name
Zinc chloride hydroxide monohydrate
|
|
Other names
Tetrabasic zinc chloride hydrate
Basic zinc chloride Zinc hydroxychloride Zinc oxychloride Micronutrients TBZC |
|
Identifiers | |
Properties | |
Zn5(OH)8Cl2·H2O | |
Molar mass | 551.88 |
Appearance | White crystalline solid |
Density | 3.3 g/cm3 |
Melting point | oF( oC) |
Insoluble in water, pH 6.9 measured by EPA method SW846-9045 | |
Solubility | Insoluble in organic solvents |
Structure | |
Hexagonal | |
Octahedral and Tetrahedral | |
Hazards | |
Safety data sheet | [1] |
NFPA 704 | |
Flash point | Non-flammable |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Zinc chloride hydroxide monohydrate is a zinc hydroxy compound with chemical formula Zn5(OH)8Cl2·H2O. It is often referred to as tetrabasic zinc chloride (TBZC), basic zinc chloride, zinc hydroxychloride, or zinc oxychloride. It is a colorless crystalline solid insoluble in water. Simonkolleite has been shown to be a desirable nutritional supplement for animals.
The naturally occurring mineral form, simonkolleite, was described as a new mineral in 1985 for samples collected at Richelsdorf, Germany. It is a rare secondary mineral formed by weathering of zinc-bearing slag, and is associated with native zinc, hydrocerussite, diaboleite, zincite and hydrozincite. It is named after Werner Simon and Kurt Kolle, Mineral collectors of Cornberg, near Michelsdorf who submitted the samples for investigation. Simonkolleite is frequently found as a corrosion product of Zn-bearing metals.
Simonkolleite is rhombohedral, space group R3m. There are two crystallographically distinct zinc sites in Simonkolleite, both of which are fully occupied by zinc. The Zn(1) site is coordinated by six hydroxyl (OH) groups in an octahedral geometry [Zn(OH)6]. The Zn(2) site is coordinated by three OH groups, and one Cl atom in a tetrahedral geometry [Zn(OH)3Cl]. The [Zn(OH)6] octahedra form an edge-sharing dioctahedral sheet similar to that observed in dioctahedral micas. On each site of the vacant octahedron, a [Zn(OH)3Cl] tetrahedron is attached to three anions of the sheet and points away from the sheet. Intercalated between adjacent sheets are interstitial water (H2O) groups. The sheets are held together by hydrogen bonding from OH groups of one sheet to Cl anions of adjacent sheets, and to interstitial H2O groups. The [Zn(OH)6] octahedra have four long equatorial bonds (at 2.157 Å) and two short apical bonds (at 2.066 Å). This apical shortening is a result of the bond-valence requirements of the coordinating OH groups and the connectivity of polyhedra in the structure. The equatorial OH groups [O(1)H] are coordinated by two Zn(1) cations and one Zn(2) cation, whereas the apical OH groups [O(2)H] are coordinated by three Zn(1) cations. As Zn(1) is six-coordinated and Zn(2) is four-coordinated, the local bond-valence requirements require the Zn(1)-O(1) bonds to be considerably longer than the Zn(1)-O(2) bonds. The [Zn(OH)3Cl] tetrahedron has three short Zn(2)-O(1) bonds (at 1.950 Å) and one long Zn(2)-Cl bond (2.312 Å) (Figure 1).