In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR) (also known as the signal-to-noise-plus-interference ratio (SNIR)) is a quantity used to give theoretical upper bounds on channel capacity (or the rate of information transfer) in wireless communication systems such as networks. Analogous to the SNR used often in wired communications systems, the SINR is defined as the power of a certain signal of interest divided by the sum of the interference power (from all the other interfering signals) and the power of some background noise. If the power of noise term is zero, then the SINR reduces to the signal-to-interference ratio (SIR). Conversely, zero interference reduces the SINR to the signal-to-noise ratio (SNR), which is used less often when developing mathematical models of wireless networks such as cellular networks.
The complexity and randomness of certain types of wireless networks and signal propagation has motivated the use of in order to model the SINR, particularly for cellular or mobile phone networks.
SINR is commonly used in wireless communication as a way to measure the quality of wireless connections. Typically, the energy of a signal fades with distance, which is referred to as a path loss in wireless networks. Conversely, in wired networks the existence of a wired path between the sender or transmitter and the receiver determines the correct reception of data. In a wireless network ones has to take other factors into account (e.g. the background noise, interfering strength of other simultaneous transmission). The concept of SINR attempts to create a representation of this aspect.
The definition of SINR is usually defined for a particular receiver (or user). In particular, for a receiver located at some point x in space (usually, on the plane), then its corresponding SINR given by
where P is the power of the incoming signal of interest, I is the interference power of the other (interfering) signals in the network, and N is some noise term, which may be a constant or random. Like other ratios in electronic engineering and related fields, the SINR is often expressed in decibels or dB.