In antenna engineering, side lobes or sidelobes are the lobes (local maxima) of the far field radiation pattern that are not the main lobe.
The radiation pattern of most antennas shows a pattern of "lobes" at various angles, directions where the radiated signal strength reaches a maximum, separated by "nulls", angles at which the radiated signal strength falls to zero. In a directional antenna in which the objective is to emit the radio waves in one direction, the lobe in that direction has a larger field strength than the others; this is the "main lobe". The other lobes are called "side lobes", and usually represent unwanted radiation in undesired directions. The side lobe in the opposite direction (180°) from the main lobe is called the back lobe. In transmitting antennas, excessive side lobe radiation wastes energy and may cause interference to other equipment. Classified information may be picked up by unintended receivers. In receiving antennas, side lobes may pick up interfering signals, and increase the noise level in the receiver.
The power density in the side lobes is generally much less than that in the main beam. It is generally desirable to minimize the sidelobe level (SLL), which is measured in decibels relative to the peak of the main beam. The main lobe and side lobes occur for both conditions of transmit, and for receive. The concepts of main and side lobes, radiation pattern, aperture shapes, and aperture weighting, apply to optics (another branch of electromagnetics) and in acoustics fields such as loudspeaker and sonar design, as well as antenna design.
For a rectangular aperture antenna having a uniform amplitude distribution (or uniform weighting), the first sidelobe is -13.26 dB relative to the peak of the main beam. For such antennas the radiation pattern has a canonical form of