*** Welcome to piglix ***

Shielding gas


Shielding gases are inert or semi-inert gases that are commonly used in several welding processes, most notably gas metal arc welding and gas tungsten arc welding (GMAW and GTAW, more popularly known as MIG and TIG, respectively). Their purpose is to protect the weld area from oxygen, and water vapour. Depending on the materials being welded, these atmospheric gases can reduce the quality of the weld or make the welding more difficult. Other arc welding processes use other methods of protecting the weld from the atmosphere as well – shielded metal arc welding, for example, uses an electrode covered in a flux that produces carbon dioxide when consumed, a semi-inert gas that is an acceptable shielding gas for welding steel.

Improper choice of a welding gas can lead to a porous and weak weld, or to excessive spatter; the latter, while not affecting the weld itself, causes loss of productivity due to the labor needed to remove the scattered drops.

Shielding gases fall into two categories—inert or semi-inert. Only two of the noble gases, helium and argon, are cost effective enough to be used in welding. These inert gases are used in gas tungsten arc welding, and also in gas metal arc welding for the welding of non-ferrous metals. Pure argon and helium are used only for some nonferrous metals. Semi-inert shielding gases, or active shield gases, include carbon dioxide, oxygen, nitrogen, and hydrogen. Most of these gases, in large quantities, would damage the weld, but when used in small, controlled quantities, can improve weld characteristics.

The important properties of shielding gases are their thermal conductivity and heat transfer properties, their density relative to air, and the ease with which they undergo ionization. Gases heavier than air (e.g. argon) blanket the weld and require lower flow rates than gases lighter than air (e.g. helium). Heat transfer is important for heating the weld around the arc. Ionizability influences how easy the arc starts, and how high voltage is required. Shielding gases can be used pure, or as a blend of two or three gases. In laser welding, the shielding gas has an additional role, preventing formation of a cloud of plasma above the weld, absorbing significant fraction of the laser energy. This is important for CO2 lasers; Nd:YAG lasers show lower tendency to form such plasma. Helium plays this role best due to its high ionization potential; the gas can absorb high amount of energy before becoming ionized.


...
Wikipedia

...