Shape theory is a branch of topology, which provides a more global view of the topological spaces than homotopy theory. The two coincide on compacta dominated homotopically by finite polyhedra. Shape theory associates with the Čech homology theory while homotopy theory associates with the singular homology theory.
Shape theory was reinvented, further developed and promoted by the Polish mathematician Karol Borsuk in 1968. Actually, the name shape theory was coined by Borsuk.
Borsuk lived and worked in Warsaw, hence the name of one of the fundamental examples of the area, the Warsaw circle. This is a compact subset of the plane produced by "closing up" a topologist's sine curve with an arc.
It has homotopy groups isomorphic to those of a point, but is not homotopy equivalent to a point—instead, the Warsaw circle is shape-equivalent to a circle (one dimensional sphere). Whitehead's theorem does not apply to Warsaw circle because it is not a CW complex.
Borsuk's shape theory was generalized onto arbitrary (non-metric) compact spaces, and even onto general categories, by Włodzimierz Holsztyński in year 1968/1969, and published in Fund. Math. 70 , 157-168, y.1971 (see Jean-Marc Cordier, Tim Porter, (1989) below). This was done in a continuous style, characteristic for the Čech homology rendered by Samuel Eilenberg and Norman Steenrod in their monograph Foundations of Algebraic Topology . Due to the circumstance, Holsztyński's paper was hardly noticed, and instead a great popularity in the field was gained by a much less advanced (more naive) paper by Sibe Mardešić and Jack Segal, which was published a little later, Fund. Math. 72, 61-68, y.1971. Further developments are reflected by the references below, and by their contents.
For some purposes, like dynamical systems, more sophisticated invariants were developed under the name strong shape. Generalizations to noncommutative geometry, e.g. the shape theory for operator algebras have been found.