*** Welcome to piglix ***

Shannon–Hartley theorem


In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley. Formulated by C=Blog2(1+S+N)

The Shannon–Hartley theorem states the channel capacity C, meaning the theoretical tightest upper bound on the information rate of data that can be communicated at an arbitrarily low error rate using an average received signal power S through an analog communication channel subject to additive white Gaussian noise of power N:

where

During the late 1920s, Harry Nyquist and Ralph Hartley developed a handful of fundamental ideas related to the transmission of information, particularly in the context of the telegraph as a communications system. At the time, these concepts were powerful breakthroughs individually, but they were not part of a comprehensive theory. In the 1940s, Claude Shannon developed the concept of channel capacity, based in part on the ideas of Nyquist and Hartley, and then formulated a complete theory of information and its transmission.


...
Wikipedia

...