In the field of computer graphics, a shader is a computer program that is used to do shading: the production of appropriate levels of light, darkness, and color within an image, or, in the modern era, also to produce special effects or do video post-processing. A definition in layperson's terms might be given as "a program that tells a computer how to draw something in a specific and unique way."
Shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for a graphics processing unit (GPU), though this is not a strict requirement. Shading languages are usually used to program the programmable GPU rendering pipeline, which has mostly superseded the fixed-function pipeline that allowed only common geometry transformation and pixel-shading functions; with shaders, customized effects can be used. The position, hue, saturation, brightness, and contrast of all pixels, vertices, or textures used to construct a final image can be altered on the fly, using algorithms defined in the shader, and can be modified by external variables or textures introduced by the program calling the shader.
Shaders are used widely in cinema postprocessing, computer-generated imagery, and video games to produce a seemingly infinite range of effects. Beyond just simple lighting models, more complex uses include altering the hue, saturation, brightness or contrast of an image, producing blur, light bloom, volumetric lighting, normal mapping for depth effects, bokeh, cel shading, posterization, bump mapping, distortion, chroma keying (so-called "bluescreen/greenscreen" effects), edge detection and motion detection, psychedelic effects, and a wide range of others.