*** Welcome to piglix ***

Serdes


A Serializer/Deserializer (SerDes pronounced sir-deez) is a pair of functional blocks commonly used in high speed communications to compensate for limited input/output. These blocks convert data between serial data and parallel interfaces in each direction. The term "SerDes" generically refers to interfaces used in various technologies and applications. The primary use of a SerDes is to provide data transmission over a single/differential line in order to minimize the number of I/O pins and interconnects.

The basic SerDes function is made up of two functional blocks: the Parallel In Serial Out (PISO) block (aka Parallel-to-Serial converter) and the Serial In Parallel Out (SIPO) block (aka Serial-to-Parallel converter). There are 4 different SerDes architectures: (1) Parallel clock SerDes, (2) Embedded clock SerDes, (3) 8b/10b SerDes, (4) Bit interleaved SerDes.

The PISO (Parallel Input, Serial Output) block typically has a parallel clock input, a set of data input lines, and input data latches. It may use an internal or external phase-locked loop (PLL) to multiply the incoming parallel clock up to the serial frequency. The simplest form of the PISO has a single shift register that receives the parallel data once per parallel clock, and shifts it out at the higher serial clock rate. Implementations may also make use of a double-buffered register to avoid metastability when transferring data between clock domains.

The SIPO (Serial Input, Parallel Output) block typically has a receive clock output, a set of data output lines and output data latches. The receive clock may have been recovered from the data by the serial clock recovery technique. However, SerDes which do not transmit a clock use reference clock to lock the PLL to the correct Tx frequency, avoiding low harmonic frequencies present in the data stream. The SIPO block then divides the incoming clock down to the parallel rate. Implementations typically have two registers connected as a double buffer. One register is used to clock in the serial stream, and the other is used to hold the data for the slower, parallel side.

Some types of SerDes include encoding/decoding blocks. The purpose of this encoding/decoding is typically to place at least statistical bounds on the rate of signal transitions to allow for easier clock recovery in the receiver, to provide framing, and to provide DC balance.


...
Wikipedia

...