*** Welcome to piglix ***

Sentiment analysis


Sentiment analysis (also known as opinion mining) refers to the use of natural language processing, text analysis and computational linguistics to identify and extract subjective information in source materials. Sentiment analysis is widely applied to reviews and social media for a variety of applications, ranging from marketing to customer service.

Generally speaking, sentiment analysis aims to determine the attitude of a speaker or a writer with respect to some topic or the overall contextual polarity of a document. The attitude may be his or her judgment or evaluation (see appraisal theory), affective state (that is to say, the emotional state of the author when writing), or the intended emotional communication (that is to say, the emotional effect the author wishes to have on the reader).

A basic task in sentiment analysis is classifying the polarity of a given text at the document, sentence, or feature/aspect level—whether the expressed opinion in a document, a sentence or an entity feature/aspect is positive, negative, or neutral. Advanced, "beyond polarity" sentiment classification looks, for instance, at emotional states such as "angry", "sad", and "happy".

Early work in that area includes Turney and Pang who applied different methods for detecting the polarity of product reviews and movie reviews respectively. This work is at the document level. One can also classify a document's polarity on a multi-way scale, which was attempted by Pang and Snyder among others: Pang and Lee expanded the basic task of classifying a movie review as either positive or negative to predict star ratings on either a 3 or a 4 star scale, while Snyder performed an in-depth analysis of restaurant reviews, predicting ratings for various aspects of the given restaurant, such as the food and atmosphere (on a five-star scale). Even though in most statistical classification methods, the neutral class is ignored under the assumption that neutral texts lie near the boundary of the binary classifier, several researchers suggest that, as in every polarity problem, three categories must be identified. Moreover, it can be proven that specific classifiers such as the Max Entropy and the SVMs can benefit from the introduction of a neutral class and improve the overall accuracy of the classification. There are in principle two ways for operating with a neutral class. Either, the algorithm proceeds by first identifying the neutral language, filtering it out and then assessing the rest in terms of positive and negative sentiments, or it builds a three way classification in one step. This second approach often involves estimating a probability distribution over all categories (e.g. Naive Bayes classifiers as implemented by Python's NLTK kit). Whether and how to use a neutral class depends on the nature of the data: if the data is clearly clustered into neutral, negative and positive language, it makes sense to filter the neutral language out and focus on the polarity between positive and negative sentiments. If, in contrast, the data is mostly neutral with small deviations towards positive and negative affect, this strategy would make it harder to clearly distinguish between the two poles.


...
Wikipedia

...