*** Welcome to piglix ***

Sensory-motor coupling


Sensory-motor coupling is the coupling or integration of the sensory system and motor system. Sensorimotor integration is not a static process. For a given stimulus, there is no one single motor command. "Neural responses at almost every stage of a sensorimotor pathway are modified at short and long timescales by biophysical and synaptic processes, recurrent and feedback connections, and learning, as well as many other internal and external variables".

The integration of the sensory and motor systems allows an animal to take sensory information and use it to make useful motor actions. Additionally, outputs from the motor system can be used to modify the sensory system's response to future stimuli. To be useful it is necessary that sensory-motor integration be a flexible process because the properties of the world and ourselves change over time. Flexible sensorimotor integration would allow an animal the ability to correct for errors and be useful in multiple situations. To produce the desired flexibility it's probable that nervous systems employ the use of internal models and efference copies.

Prior to movement, an animal's current sensory state is used to generate a motor command. To generate a motor command, first, the current sensory state is compared to the desired or target state. Then, the nervous system transforms the sensory coordinates into the motor system's coordinates, and the motor system generates the necessary commands to move the muscles so that the target state is reached.

An important aspect of sensorimotor integration is the efference copy. The efference copy is a copy of a motor command that is used in internal models to predict what the new sensory state will be after the motor command has been completed. The efference copy can be used by the nervous system to distinguish self-generated environmental changes, compare an expected response to what actually occurs in the environment, and to increase the rate at which a command can be issued by predicting an organism's state prior to receiving sensory input.


...
Wikipedia

...