*** Welcome to piglix ***

Semi-definite programming


Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function (an objective function is a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

Semidefinite programming is a relatively new field of optimization which is of growing interest for several reasons. Many practical problems in operations research and combinatorial optimization can be modeled or approximated as semidefinite programming problems. In automatic control theory, SDPs are used in the context of linear matrix inequalities. SDPs are in fact a special case of cone programming and can be efficiently solved by interior point methods. All linear programs can be expressed as SDPs, and via hierarchies of SDPs the solutions of polynomial optimization problems can be approximated. Semidefinite programming has been used in the optimization of complex systems. In recent years, some quantum query complexity problems have been formulated in terms of semidefinite programs.

A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope. In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP are replaced by semidefiniteness constraints on matrix variables in SDP. Specifically, a general semidefinite programming problem can be defined as any mathematical programming problem of the form


...
Wikipedia

...