*** Welcome to piglix ***

Semantically secure


In cryptography, a cryptosystem is semantically secure if any probabilistic, polynomial-time algorithm (PPTA) that is given the ciphertext of a certain message (taken from any distribution of messages), and the message's length, cannot determine any partial information on the message with probability non-negligibly higher than all other PPTA's that only have access to the message length (and not the ciphertext). In other words, knowledge of the ciphertext (and length) of some unknown message does not reveal any additional information on the message that can be feasibly extracted. This concept is the computational complexity analogue to Shannon's concept of perfect secrecy. Perfect secrecy means that the ciphertext reveals no information at all about the plaintext, whereas semantic security implies that any information revealed cannot be feasibly extracted.

The notion of semantic security was first put forward by Goldwasser and Micali in 1982. However, the definition they initially proposed offered no straightforward means to prove the security of practical cryptosystems. Goldwasser/Micali subsequently demonstrated that semantic security is equivalent to another definition of security called ciphertext indistinguishability under chosen-plaintext attack. This latter definition is more common than the original definition of semantic security because it better facilitates proving the security of practical cryptosystems.

In the case of symmetric-key algorithm cryptosystems, an adversary must not be able to compute any information about a plaintext from its ciphertext. This may be posited as an adversary, given two plaintexts of equal length and their two respective ciphertexts, cannot determine which ciphertext belongs to which plaintext.


...
Wikipedia

...