Self-oscillation is the generation and maintenance of a periodic motion by a source of power that lacks any corresponding periodicity. The oscillator itself controls the phase with which the external power acts on it. Self-oscillators are therefore distinct from forced and parametric resonators, in which the power that sustains the motion must be modulated externally. In linear systems, self-oscillation appears as an instability associated with a negative damping term, which causes small perturbations to grow exponentially in amplitude. This negative damping is due to a positive feedback between the oscillation and the modulation of the external source of power. The amplitude and waveform of steady self-oscillations are determined by the nonlinear characteristics of the system. Self-oscillations are important in physics, engineering, biology, and economics.
The study of self-oscillators dates back to Robert Willis, George Biddell Airy, James Clerk Maxwell, and Lord Rayleigh in the 19th century. The term itself (also translated as "auto-oscillation") was coined by the Soviet physicist Aleksandr Andronov, who studied them in the context of the mathematical theory of the structural stability of dynamical systems. Other important work on the subject, both theoretical and experimental, was due to André Blondel, Balthasar van der Pol, Alfred-Marie Liénard, and Philippe Le Corbeiller in the 20th century.
The same phenomenon is sometimes labelled as "maintained", "sustained", "self-exciting", "self-induced", "spontaneous", or "autonomous" oscillation. Unwanted self-oscillations are known in the mechanical engineering literature as hunting, and in electronics as parasitic oscillations. Important early studied examples of self-oscillation include the centrifugal governor and railroad wheels.