*** Welcome to piglix ***

Self-tuning


In control theory a self-tuning system is capable of optimizing its own internal running parameters in order to maximize or minimize the fulfilment of an objective function; typically the maximization of efficiency or error minimization.

Self-tuning and auto-tuning often refer to the same concept. Many software research groups consider auto-tuning the proper nomenclature.

Self-tuning systems typically exhibit non-linear adaptive control. Self-tuning systems have been a hallmark of the aerospace industry for decades, as this sort of feedback is necessary to generate optimal multi-variable control for non-linear processes. In the telecommunications industry, adaptive communications are often used to dynamically modify operational system parameters to maximize efficiency and robustness.

Examples of self-tuning systems in computing include:

Performance benefits can be substantial. Professor Jack Dorr, an American computer scientist, claims self-tuning boosts performance, often on the order of 300%.

Digital self-tuning controllers are an example of self-tuning systems at the hardware level.

Self-tuning systems are typically composed of four components: expectations, measurement, analysis, and actions. The expectations describe how the system should behave given exogenous conditions.

Measurements gather data about the conditions and behaviour. Analysis helps determine whether the expectations are being met- and which subsequent actions should be performed. Common actions are gathering more data and performing dynamic reconfiguration of the system.

Self-tuning (self-adapting) systems of automatic control are systems whereby adaptation to randomly changing conditions is performed by means of automatically changing parameters or via automatically determining their optimum configuration [1]. In any non-self-tuning automatic control system there are parameters which have an influence on system stability and control quality and which can be tuned. If these parameters remain constant whilst operating conditions (such as input signals or different characteristics of controlled objects) are substantially varying, control can degrade or even become unstable. Manual tuning is often cumbersome and sometimes impossible. In such cases, not only is using self-tuning systems technically and economically worthwhile, but it could be the only means of robust control. Self-tuning systems can be with or without parameter determination.


...
Wikipedia

...