*** Welcome to piglix ***

Self-assembling peptide


Self-assembling peptides are a category of peptides which undergo spontaneous assembling into ordered nanostructures. These designer peptides have attracted interest in the field of nanotechnology for their potential for application in areas such as biomedical nanotechnology, cell culturing, molecular electronics, and more.

Effectively self-assembling peptides act as building blocks for a wide range of material and device applications. The essence of this technology is to replicate what nature does: to use molecular recognition processes to form ordered assemblies of building blocks that are capable of conducting biochemical activities. A compherensive review on Self-assembled Peptides can be found in reference.

Peptides are able to perform as excellent building blocks for a wide range of materials as they can be designed to combine with a range of other building blocks such as lipids, sugars, nucleic acids, metallic nanocrystals and so on; this gives the peptides an edge over carbon nanotubes, which are another popular nanomaterial, as the carbon structure is unreactive. They also exhibit properties such as biocompatibility and molecular recognition; the latter is particularly useful as it enables specific selectivity for building ordered nanostructures. Additionally peptides have superb resistance to extreme conditions of high/low temperatures, detergents and denaturants.

The ability of peptides to perform self-assembly allows them to be used as fabrication tools, which is currently and will continue to grow as a fundamental part of nanomaterials production. The self-assembling of peptides is facilitated through the molecules’ structural and chemical compatibility with each other, and the structures formed demonstrates physical and chemical stability.

A great advantage of using self-assembling peptides to build nanostructures in a bottom-up approach is that specific features can be incorporated; the peptides can be modified and functionalized. This approach means that the final structures are built from the self-integration of small, simple building blocks. Essentially this approach is needed for nanoscale structure, as the top-down method of miniaturizing device using sophisticated lithography and etching techniques has reached a physical limit. Moreover, the top-down approach is applicable to mainly only silicon based technology, and is unable to be used for biological developments.


...
Wikipedia

...