*** Welcome to piglix ***

Selection sort

Selection sort
Selection sort animation.gif
Selection sort animation
Class Sorting algorithm
Data structure Array
Worst-case performance О(n2)
Best-case performance О(n2)
Average performance О(n2)
Worst-case space complexity О(n) total, O(1) auxiliary

In computer science, selection sort is a sorting algorithm, specifically an in-place comparison sort. It has O(n2) time complexity, making it inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity, and it has performance advantages over more complicated algorithms in certain situations, particularly where auxiliary memory is limited.

The algorithm divides the input list into two parts: the sublist of items already sorted, which is built up from left to right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in the unsorted sublist, exchanging (swapping) it with the leftmost unsorted element (putting it in sorted order), and moving the sublist boundaries one element to the right.

Here is an example of this sort algorithm sorting five elements:

(Nothing appears changed on these last two lines because the last two numbers were already in order)

Selection sort can also be used on list structures that make add and remove efficient, such as a linked list. In this case it is more common to remove the minimum element from the remainder of the list, and then insert it at the end of the values sorted so far. For example:

Selection sort is not difficult to analyze compared to other sorting algorithms since none of the loops depend on the data in the array. Selecting the lowest element requires scanning all n elements (this takes n − 1 comparisons) and then swapping it into the first position. Finding the next lowest element requires scanning the remaining n − 1 elements and so on, for (n − 1) + (n − 2) + ... + 2 + 1 = n(n - 1) / 2 ∈ Θ(n2) comparisons (see arithmetic progression). Each of these scans requires one swap for n − 1 elements (the final element is already in place).

Among simple average-case Θ(n2) algorithms, selection sort almost always outperforms bubble sort and gnome sort. Insertion sort is very similar in that after the kth iteration, the first k elements in the array are in sorted order. Insertion sort's advantage is that it only scans as many elements as it needs in order to place the k + 1st element, while selection sort must scan all remaining elements to find the k + 1st element.


...
Wikipedia

...