*** Welcome to piglix ***

Segmented mirror


A segmented mirror is an array of smaller mirrors designed to act as segments of a single large curved mirror. The segments can be either spherical or asymmetric (if they are part of a larger parabolic reflector). They are used as objectives for large reflecting telescopes. To function, all the mirror segments have to be polished to a precise shape and actively aligned by a computer-controlled active optics system using actuators built into the mirror support cell. The concept and necessary technologies were initially developed under the leadership of Dr. Jerry Nelson at the Lawrence Berkeley National Laboratory and University of California during the 1980s, and have since spread worldwide to the point that essentially all future large optical telescopes plan to use segmented mirrors.

There is a technological limit for primary mirrors made of a single rigid piece of glass. Such non-segmented, or monolithic mirrors can not be constructed larger than about eight meters in diameter. The largest monolithic mirror in use are currently the two primary mirrors of the Large Binocular Telescope, each with a diameter of 8.4 meters. The use of segmented mirrors is therefore a key component for large-aperture telescopes. Using a monolithic mirror much larger than 5 meters is prohibitively expensive due to the cost of both the mirror, and the massive structure needed to support it. A mirror beyond that size would also sag slightly under its own weight as the telescope was rotated to different positions, changing the precision shape of the surface. Segments are also easier to fabricate, transport, install, and maintain over very large monolithic mirrors.

Segmented mirrors do have the drawback that each segment may require some precise asymmetrical shape, and rely on a complicated computer-controlled mounting system. All of the segments also cause diffraction effects in the final image.


...
Wikipedia

...