In mathematics, particularly differential topology, the secondary vector bundle structure refers to the natural vector bundle structure (TE, p∗, TM) on the total space TE of the tangent bundle of a smooth vector bundle (E, p, M), induced by the push-forward p∗ : TE → TM of the original projection map p : E → M. This gives rise to a double vector bundle structure (TE,E,TM,M).
In the special case (E, p, M) = (TM, πTM, M), where TE = TTM is the double tangent bundle, the secondary vector bundle (TTM, (πTM)∗, TM) is isomorphic to the tangent bundle (TTM, πTTM, TM) of TM through the canonical flip.
Let (E, p, M) be a smooth vector bundle of rank N. Then the preimage (p∗)−1(X) ⊂ TE of any tangent vector X in TM in the push-forward p∗ : TE → TM of the canonical projection p : E → M is a smooth submanifold of dimension 2N, and it becomes a vector space with the push-forwards
of the original addition and scalar multiplication
as its vector space operations. The triple (TE, p∗, TM) becomes a smooth vector bundle with these vector space operations on its fibres.
Let (U, φ) be a local coordinate system on the base manifold M with φ(x) = (x1, ..., xn) and let