*** Welcome to piglix ***

Secondary breakdown


For power semiconductor devices (such as BJT, MOSFET, thyristor or IGBT), the safe operating area (SOA) is defined as the voltage and current conditions over which the device can be expected to operate without self-damage.

SOA is usually presented in transistor datasheets as a graph with VCE (collector-emitter voltage) on the abscissa and ICE (collector-emitter current) on the ordinate; the safe 'area' referring to the area under the curve. The SOA specification combines the various limitations of the device — maximum voltage, current, power, junction temperature, secondary breakdown — into one curve, allowing simplified design of protection circuitry.

Often, in addition to the continuous rating, separate SOA curves are plotted for short duration pulse conditions (1 ms pulse, 10 ms pulse, etc.).

The safe operating area curve is a graphical representation of the power handling capability of the device under various conditions. The SOA curve takes into account the wire bond current carrying capability, transistor junction temperature, internal power dissipation and secondary breakdown limitations.

Where both current and voltage are plotted on logarithmic scales, the borders of the SOA are straight lines:

SOA specifications are useful to the design engineer working on power circuits such as amplifiers and power supplies as they allow quick assessment of the limits of device performance, the design of appropriate protection circuitry, or selection of a more capable device. SOA curves are also important in the design of foldback circuits.

For a device that makes use of the secondary breakdown effect see Avalanche transistor

Secondary breakdown is a failure mode in bipolar power transistors. In a power transistor with a large junction area, under certain conditions of current and voltage, the current concentrates in a small spot of the base-emitter junction. This causes local heating, progressing into a short between collector and emitter. This often leads to the destruction of the transistor. Secondary breakdown can occur both with forward and reverse base drive. Except at low collector-emitter voltages, the secondary breakdown limit restricts the collector current more than the steady-state power dissipation of the device. Power MOSFETs do not exhibit secondary breakdown, and their safe operating area is limited only by maximum current (the capacity of the bonding wires), maximum power dissipation and maximum voltage. However, Power MOSFETs have parasitic PN and BJT elements within the structure, which can cause more complex localized failure modes resembling Secondary Breakdown.


...
Wikipedia

...