Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that not only detects and measures the position of aircraft i.e. bearing, but also requests additional information from the aircraft itself such as its identity and altitude. Unlike primary radar systems that measure the bearing of targets using the detected reflections of radio signals, SSR relies on targets equipped with a radar transponder, that replies to each interrogation signal by transmitting a response containing encoded data. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II, therefore the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance.
The rapid wartime development of radar had obvious applications for air traffic control (ATC) as a means of providing continuous surveillance of air traffic disposition. Precise knowledge of the positions of aircraft would permit a reduction in the normal procedural separation standards, which in turn promised considerable increases in the efficiency of the airways system. This type of radar (now called a primary radar) can detect and report the position of anything that reflects its transmitted radio signals including, depending on its design, aircraft, birds, weather and land features. For air traffic control purposes this is both an advantage and a disadvantage. Its targets do not have to co-operate, they only have to be within its coverage and be able to reflect radio waves, but it only indicates the position of the targets, it does not identify them. When primary radar was the only type of radar available, the correlation of individual radar returns with specific aircraft typically was achieved by the controller observing a directed turn by the aircraft. Primary radar is still used by ATC today as a backup/complementary system to secondary radar, although its coverage and information is more limited.
The need to be able to identify aircraft more easily and reliably led to another wartime radar development, the Identification Friend or Foe (IFF) system, which had been created as a means of positively identifying friendly aircraft from enemy. This system, which became known in civil use as secondary surveillance radar (SSR), or in the USA as the air traffic control radar beacon system (ATCRBS), relies on a piece of equipment aboard the aircraft known as a "transponder." The transponder is a radio receiver and transmitter pair which receives on 1030 MHz and transmits on 1090 MHz. The target aircraft transponder replies to signals from an interrogator (usually, but not necessarily, a ground station co-located with a primary radar) by transmitting a coded reply signal containing the requested information.