*** Welcome to piglix ***

Second-order differential equation


A differential equation is a mathematical equation that relates some function with its derivatives. In applications, the functions usually represent physical quantities, the derivatives represent their rates of change, and the equation defines a relationship between the two. Because such relations are extremely common, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

In pure mathematics, differential equations are studied from several different perspectives, mostly concerned with their solutions—the set of functions that satisfy the equation. Only the simplest differential equations are solvable by explicit formulas; however, some properties of solutions of a given differential equation may be determined without finding their exact form.

If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.

Differential equations first came into existence with the invention of calculus by Newton and Leibniz. In Chapter 2 of his 1671 work "Methodus fluxionum et Serierum Infinitarum", Isaac Newton listed three kinds of differential equations:

He solves these examples and others using infinite series and discusses the non-uniqueness of solutions.

Jacob Bernoulli proposed the Bernoulli differential equation in 1695. This is an ordinary differential equation of the form


...
Wikipedia

...