A seawater greenhouse is a greenhouse structure that enables the growth of crops in arid regions, using seawater and solar energy. The technique involves pumping seawater (or allowing it to gravitate if below sea level) to an arid location and then subjecting it to two processes: first, it is used to humidify and cool the air, and second, it is evaporated by solar heating and distilled to produce fresh water. Finally, the remaining humidified air is expelled from the greenhouse and used to improve growing conditions for outdoor plants. The technology was introduced by British inventor Charlie Paton in the early 1990s and is being developed by his UK company Seawater Greenhouse Ltd. The more concentrated salt water may either be further evaporated for the production of salt and other elements, or discharged back to the sea. The seawater greenhouse is a response to the global water crisis and peak water.
The seawater greenhouse concept was first researched and developed in 1991 by Charlie Paton's company Light Works Ltd, now Seawater Greenhouse Ltd. The first pilot project commenced in 1992 with the search for a test site that was eventually found on the Canary Island of Tenerife. A prototype seawater greenhouse was assembled in the UK and constructed on the site in Tenerife. The results from this pilot project validated the concept and demonstrated the potential for other arid regions.
The original pilot design evolved into a lower cost solution using a lighter steel structure, similar to a multi-span polytunnel. This structure was designed to be cost effective and suitable for local sourcing. The design was first tested and validated through a second seawater greenhouse that was constructed on Al-Aryam Island, Abu Dhabi, United Arab Emirates in 2000. The year 2004 saw the completion of a third pilot seawater greenhouse near Muscat, Oman in collaboration with Sultan Qaboos University, providing an opportunity to develop a sustainable horticultural sector on the Batinah coast. These projects have enabled the validation of a thermodynamic simulation model which, given appropriate meteorological data, accurately predict and quantify how the seawater greenhouse will perform in other parts of the world.