Seasonal adjustment is a statistical method for removing the seasonal component of a time series that exhibits a seasonal pattern. It is usually done when wanting to analyse the trend of a time series independently of the seasonal components. It is normal to report seasonally adjusted data for unemployment rates to reveal the underlying trends in labor markets. Many economic phenomena have seasonal cycles, such as agricultural production and consumer consumption, e.g. greater consumption leading up to Christmas. It is necessary to adjust for this component in order to understand what underlying trends are in the economy and so official statistics are often adjusted to remove seasonal components.
The investigation of many economic time series becomes problematic due to seasonal fluctuations. Time series are made up of four components:
The difference between seasonal and cyclic patterns:
The relation between decomposition of time series components
Unlike the trend and cyclical components, seasonal components, theoretically, happen with similar magnitude during the same time period each year. The seasonal components of a series are sometimes considered to be uninteresting and to hinder the interpretation of a series. Removing the seasonal component directs focus on other components and will allow better analysis.
Different statistical research groups have developed different methods of seasonal adjustment, for example X-12-ARIMA developed by the United States Census Bureau; TRAMO/SEATS developed by the Bank of Spain; STAMP developed by a group led by S. J. Koopman; and “Seasonal and Trend decomposition using Loess” (STL) developed by Cleveland et al. (1990). While X-12-ARIMA can only be applied to monthly or quarterly data, STL decomposition can be used on data with any type of seasonality. Furthermore, unlike X-12-ARIMA, STL allows the user to control the degree of smoothness of the trend cycle and how much the seasonal component changes over time. X-12-ARIMA can handle both additive and multiplicative decomposition whereas STL can only be used for additive decomposition. In order to achieve a multiplicative decomposition using STL, the user can take the log of the data before decomposing, and then back-transform after the decomposition.