In computer science, a search algorithm is an algorithm that retrieves information stored within some data structure. Data structures can include linked lists, arrays, search trees, hash tables, or various other storage methods. The appropriate search algorithm often depends on the data structure being searched. Searching also encompasses algorithms that query the data structure, such as the SQL SELECT command.
Search algorithms can be classified based on their mechanism of searching. Linear search algorithms check every record for the one associated with a target key in a linear fashion.[3][3][3][4] Binary, or half interval searches, repeatedly target the center of the search structure and divide the search space in half. Comparison search algorithms improve on linear searching by successively eliminating records based on comparisons of the keys until the target record is found, and can be applied on data structures with a defined order. Digital search algorithms work based on the properties of digits in data structures that use numerical keys. Finally, hashing directly maps keys to records based on a hash function. Searches outside of a linear search require that the data be sorted in some way.
Search functions are also evaluated on the basis of their complexity, or maximum theoretical run time. Binary search functions, for example, have a maximum complexity of O(log(n)), or logarithmic time. This means that the maximum number of operations needed to find the search target is a logarithmic function of the size of the search space.
Algorithms for searching virtual spaces are used in constraint satisfaction problem, where the goal is to find a set of value assignments to certain variables that will satisfy specific mathematical equations and inequations / inequalities. They are also used when the goal is to find a variable assignment that will maximize or minimize a certain function of those variables. Algorithms for these problems include the basic brute-force search (also called "naïve" or "uninformed" search), and a variety of heuristics that try to exploit partial knowledge about structure of the space, such as linear relaxation, constraint generation, and constraint propagation.