In materials science, a dislocation or Taylor's dislocation is a crystallographic defect or irregularity within a crystal structure. The presence of dislocations strongly influences many of the properties of materials.
The theory describing the elastic fields of the defects was originally developed by Vito Volterra in 1907, but the term 'dislocation' to refer to a defect on the atomic scale was coined by G. I. Taylor in 1934. Some types of dislocations can be visualized as being caused by the termination of a plane of atoms in the middle of a crystal. In such a case, the surrounding planes are not straight, but instead they bend around the edge of the terminating plane so that the crystal structure is perfectly ordered on either side. This phenomenon is analogous to the following situation related to a stack of paper: If half of a piece of paper is inserted into a stack of paper, the defect in the stack is noticeable only at the edge of the half sheet.
The two primary types of dislocations are edge dislocations and screw dislocations. Mixed dislocations are intermediate between these.
Mathematically, dislocations are a type of topological defect, sometimes called a soliton. Dislocations behave as stable particles: they can move around, but maintain their identity. Two dislocations of opposite orientation can cancel when brought together, but a single dislocation typically cannot "disappear" on its own.
Two main types of dislocations exist: edge and screw. Dislocations found in real materials are typically mixed, meaning that they have characteristics of both.
A crystalline material consists of a regular array of atoms, arranged into lattice planes (imagine stacking oranges in a grocery, each of the trays of oranges are the lattice planes). One approach is to begin by considering a 3D representation of a perfect crystal lattice, with the atoms represented by spheres. The viewer may then start to simplify the representation by visualising planes of atoms instead of the atoms themselves (Figure A).
An edge dislocation is a defect where an extra half-plane of atoms is introduced midway through the crystal, distorting nearby planes of atoms. When enough force is applied from one side of the crystal structure, this extra plane passes through planes of atoms breaking and joining bonds with them until it reaches the grain boundary. A simple schematic diagram of such atomic planes can be used to illustrate lattice defects such as dislocations. (Figure B represents the "extra half-plane" concept of an edge type dislocation). The dislocation has two properties, a line direction, which is the direction running along the bottom of the extra half plane, and the Burgers vector which describes the magnitude and direction of distortion to the lattice. In an edge dislocation, the Burgers vector is perpendicular to the line direction. (see also Jog (dislocations))