*** Welcome to piglix ***

Scientific visualization


Scientific visualization (also spelled scientific visualisation) is an interdisciplinary branch of science. According to Friendly (2008), it is "primarily concerned with the visualization of three-dimensional phenomena (architectural, meteorological, medical, biological, etc.), where the emphasis is on realistic renderings of volumes, surfaces, illumination sources, and so forth, perhaps with a dynamic (time) component". It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data.

One of the earliest examples of three-dimensional scientific visualisation was Maxwell's thermodynamic surface, sculpted in clay in 1874 by James Clerk Maxwell. This prefigured modern scientific visualization techniques that use computer graphics.

Notable early two-dimensional examples include the flow map of Napoleon’s March on Moscow produced by Charles Joseph Minard in 1869; the “coxcombs” used by Florence Nightingale in 1857 as part of a campaign to improve sanitary conditions in the British army; and the dot map used by John Snow in 1855 to visualise the Broad Street cholera outbreak.

Scientific visualization using computer graphics gained in popularity as graphics matured. Primary applications were scalar fields and vector fields from computer simulations and also measured data. The primary methods for visualizing two-dimensional (2D) scalar fields are color mapping and drawing contour lines. 2D vector fields are visualized using glyphs and streamlines or line integral convolution methods. 2D tensor fields are often resolved to a vector field by using one of the two eigenvectors to represent the tensor each point in the field and then visualized using vector field visualization methods.


...
Wikipedia

...