*** Welcome to piglix ***

Scientific misconceptions


Scientific misconceptions are commonly held beliefs about science that have no basis in actual scientific fact. Scientific misconceptions can also refer to preconceived notions based on religious and/or cultural influences. Many scientific misconceptions occur because of faulty teaching styles and the sometimes distancing nature of true scientific texts.

Misconceptions (a.k.a. alternative conceptions, alternative frameworks, etc.) are a key issue from constructivism in science education, a major theoretical perspective informing science teaching. In general, scientific misconceptions have their foundations in a few "intuitive knowledge domains, including folkmechanics (object boundaries and movements), folkbiology (biological species configurations and relationships), and folkpsychology (interactive agents and goal-directed behavior)", that enable humans to interact effectively with the world in which they evolved. That these folksciences do not map accurately onto modern scientific theory is not unexpected. A second major source of scientific misconceptions are instruction-induced or didaskalogenic misconceptions.

There has been extensive research into students' informal ideas about science topics, and studies have suggested reported misconceptions vary considerably in terms of properties such as coherence, stability, context-dependence, range of application etc. Misconceptions can be broken down into five basic categories,(Alkhalifa ,2006) 1) preconceived notions; 2) nonscientific beliefs; 3) conceptual misunderstandings; 4) vernacular misconceptions; and 5) factual misconceptions (e.g., Committee on Undergraduate Science Education, 1997).

While most student misconceptions go unrecognized, there has been an informal effort to identify errors and misconceptions present in textbooks. The Bad Science web page, maintained by Alistair Fraser, is a good resource. Another important resource is the Students' and Teachers' Conceptions and Science Education (STCSE) website maintained by Reinders Duit. Another useful resource related to chemistry has been compiled by Vanessa Barker

In the context of Socratic instruction, student misconceptions are identified and addressed through a process of questioning and listening. A number of strategies have been employed to understand what students are thinking prior, or in response, to instruction. These strategies include various forms of "real type" feedback, which can involve the use of colored cards or electronic survey systems (clickers). Another approach is typified by the strategy known as "Just in Time Teaching". Here students are asked various questions prior to class, the instructor uses these responses to adapt his or her teaching to the students' prior knowledge and misconceptions.


...
Wikipedia

...