In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) refers to the possibility under certain conditions (see below) of interchanging the order of taking partial derivatives of a function
of n variables. If the partial derivative with respect to is denoted with a subscript , then the symmetry is the assertion that the second-order partial derivatives satisfy the identity
so that they form an n × n symmetric matrix. This is sometimes known as Schwarz's theorem, Clairaut's theorem, or Young's theorem.
In the context of partial differential equations it is called the Schwarz integrability condition.