The scattered disc (or scattered disk) is a distant circumstellar disc in the Solar System that is sparsely populated by icy minor planets, a subset of the broader family of trans-Neptunian objects. The scattered-disc objects (SDOs) have orbital eccentricities ranging as high as 0.8, inclinations as high as 40°, and perihelia greater than 30 astronomical units (4.5×109 km; 2.8×109 mi). These extreme orbits are thought to be the result of gravitational "scattering" by the gas giants, and the objects continue to be subject to perturbation by the planet Neptune.
Although the closest scattered-disc objects approach the Sun at about 30–35 AU, their orbits can extend well beyond 100 AU. This makes scattered objects among the most distant and coldest objects in the Solar System. The innermost portion of the scattered disc overlaps with a torus-shaped region of orbiting objects traditionally called the Kuiper belt, but its outer limits reach much further away from the Sun and further above and below the ecliptic than the Kuiper belt proper.
Because of its unstable nature, astronomers now consider the scattered disc to be the place of origin for most periodic comets in the Solar System, with the centaurs, a population of icy bodies between Jupiter and Neptune, being the intermediate stage in an object's migration from the disc to the inner Solar System. Eventually, perturbations from the giant planets send such objects towards the Sun, transforming them into periodic comets. Many Oort cloud objects are also thought to have originated in the scattered disc. Detached objects are not sharply distinct from scattered disc objects, and some such as Sedna have sometimes been considered to be included in this group.