*** Welcome to piglix ***

Scalenohedron


An n-gonal bipyramid or dipyramid is a polyhedron formed by joining an n-gonal pyramid and its mirror image base-to-base. An n-gonal bipyramid has 2n triangle faces, 3n edges, and 2 + n vertices.

The referenced n-gon in the name of the bipyramids is not an external face but an internal one, existing on the primary symmetry plane which connects the two pyramid halves.

A right bipyramid has two points above and below the centroid of its base. Nonright bipyramids are called oblique bipyramids. A regular bipyramid has a regular polygon internal face and is usually implied to be a right bipyramid. A right bipyramid can be represented as { } + P for internal polygon P, and a regular n-bipyramid { } + {n}.

A concave bipyramid has a concave interior polygon.

The face-transitive regular bipyramids are the dual polyhedra of the uniform prisms and will generally have isosceles triangle faces.

A bipyramid can be projected on a sphere or globe as n equally spaced lines of longitude going from pole to pole, and bisected by a line around the equator.

Bipyramid faces, projected as spherical triangles, represent the fundamental domains in the dihedral symmetry Dnh.

The volume of a bipyramid is V =2/3Bh where B is the area of the base and h the height from the base to the apex. This works for any location of the apex, provided that h is measured as the perpendicular distance from the plane which contains the base.


...
Wikipedia

...