In computer science and mathematical logic, the satisfiability modulo theories (SMT) problem is a decision problem for logical formulas with respect to combinations of background theories expressed in classical first-order logic with equality. Examples of theories typically used in computer science are the theory of real numbers, the theory of integers, and the theories of various data structures such as lists, arrays, bit vectors and so on. SMT can be thought of as a form of the constraint satisfaction problem and thus a certain formalized approach to constraint programming.
Formally speaking, an SMT instance is a formula in first-order logic, where some function and predicate symbols have additional interpretations, and SMT is the problem of determining whether such a formula is satisfiable. In other words, imagine an instance of the Boolean satisfiability problem (SAT) in which some of the binary variables are replaced by predicates over a suitable set of non-binary variables. A predicate is basically a binary-valued function of non-binary variables. Example predicates include linear inequalities (e.g., ) or equalities involving uninterpreted terms and function symbols (e.g., where is some unspecified function of two arguments.) These predicates are classified according to each respective theory assigned. For instance, linear inequalities over real variables are evaluated using the rules of the theory of linear real arithmetic, whereas predicates involving uninterpreted terms and function symbols are evaluated using the rules of the theory of uninterpreted functions with equality (sometimes referred to as the empty theory). Other theories include the theories of arrays and list structures (useful for modeling and verifying computer programs), and the theory of bit vectors (useful in modeling and verifying hardware designs). Subtheories are also possible: for example, difference logic is a sub-theory of linear arithmetic in which each inequality is restricted to have the form for variables and and constant .