*** Welcome to piglix ***

Samarium-144

Main isotopes of samarium
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
144Sm 3.08% stable
145Sm syn 340 d ε 145Pm
146Sm syn 6.8×107 y α 142Nd
147Sm 15.00% 1.06×1011 y α 143Nd
148Sm 11.25% 7×1015 y α 144Nd
149Sm 13.82% stable
150Sm 7.37% stable
151Sm syn 90 y β 151Eu
152Sm 26.74% stable
153Sm syn 46.284 h β 153Eu
154Sm 22.74% stable
Standard atomic weight (Ar)
  • 150.36(2)

Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06×1011 y) and 148Sm (7×1015 y), with 152Sm being the most abundant (26.75% natural abundance). 146Sm is also fairly long-lived (6.8×107 y), but is not long-lived enough to have survived from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide.

Other than the naturally occurring isotopes, the longest-lived radioisotopes are 151Sm, which has a half-life of 88.8 years, and 145Sm, which has a half-life of 340 days. All of the remaining radioisotopes have half-lives that are less than two days, and the majority of these have half-lives that are less than 48 seconds. This element also has twelve known isomers with the most stable being 141mSm (t1/2 22.6 minutes), 143m1Sm (t1/2 66 seconds) and 139mSm (t1/2 10.7 seconds).

The long lived isotopes,146Sm, 147Sm, and 148Sm primarily decay by alpha decay to isotopes of neodymium. Lighter unstable isotopes of samarium primarily decay by electron capture to isotopes of promethium, while heavier ones decay by beta decay to isotopes of europium.

Isotopes of samarium are used in samarium-neodymium dating for determining the age relationships of rocks and meteorites.

151Sm is a medium-lived fission product and acts as a neutron poison in the nuclear fuel cycle. The stable fission product 149Sm is also a neutron poison.


...
Wikipedia

...