The Sallen–Key topology is an electronic filter topology used to implement second-order active filters that is particularly valued for its simplicity. It is a degenerate form of a voltage-controlled voltage-source (VCVS) filter topology. A VCVS filter uses a unity-gain voltage amplifier with practically infinite input impedance and zero output impedance to implement a 2-pole low-pass, high-pass, bandpass, bandstop, or allpass response. The unity-gain amplifier allows very high Q factor and passband gain without the use of inductors. A Sallen–Key filter is a variation on a VCVS filter that uses a unity-gain amplifier (i.e., a pure buffer amplifier with 0 dB gain). It was introduced by R. P. Sallen and E. L. Key of MIT Lincoln Laboratory in 1955.
Because of its high input impedance and easily selectable gain, an operational amplifier in a conventional non-inverting configuration is often used in VCVS implementations. Implementations of Sallen–Key filters often use an operational amplifier configured as a voltage follower; however, emitter or source followers are other common choices for the buffer amplifier.