Saccharopine Dehydrogenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Saccharopine dehydrogenase from Magnaporthe grisea
|
|||||||||
Identifiers | |||||||||
Symbol | Saccharop_dh | ||||||||
Pfam | PF03435 | ||||||||
Pfam clan | CL0063 | ||||||||
InterPro | IPR005097 | ||||||||
SCOP | 1ff9 | ||||||||
SUPERFAMILY | 1ff9 | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
saccharopine dehydrogenase (putative) | |
---|---|
Identifiers | |
Symbol | SCCPDH |
Entrez | 51097 |
HUGO | 24275 |
RefSeq | NM_016002 |
UniProt | Q8NBX0 |
Other data | |
Locus | Chr. 1 q44 |
In molecular biology, the protein domain Saccharopine dehydrogenase (SDH), also named Saccharopine reductase, is an enzyme involved in the metabolism of the amino acid lysine, via an intermediate substance called saccharopine. The Saccharopine dehydrogenase enzyme can be classified under EC 1.5.1.7, EC 1.5.1.8, EC 1.5.1.9, and EC 1.5.1.10. It has an important function in lysine metabolism and catalyses a reaction in the alpha-Aminoadipic acid pathway. This pathway is unique to fungal organisms therefore, this molecule could be useful in the search for new antibiotics. This protein family also includes saccharopine dehydrogenase and homospermidine synthase. It is found in prokaryotes, eukaryotes and archaea.
Simplistically, SDH uses NAD+ as an oxidant to catalyse the reversible pyridine nucleotide dependent oxidative deamination of the substrate, Saccharopine, in order to form the products, lysine and alpha-ketoglutarate. This can be described by the following equation: