The SUN workstation was a modular computer system designed at Stanford University in the early 1980s. It became the seed technology for many commercial products, including the original workstations from Sun Microsystems.
In 1979 Xerox donated some Alto computers, developed at their Palo Alto Research Center, to Stanford's Computer Science Department, as well as other universities that were developing the early Internet. The Altos were connected using Ethernet to form several local area networks. The SUN's design was inspired by that of the Alto, but used lower-cost modular components. The project name was derived from the initials of the campus' Stanford University Network.
Professor Forest Baskett suggested the best-known configuration: a relatively low cost personal workstation for computer aided logic design work. The design created a 3M computer: a 1 million instructions per second (MIPS) processor, 1 Megabyte of memory and a 1 Megapixel raster scan bit-map graphics display. Sometimes the $10,000 estimated price was called the fourth "M" — a "Megapenny". Director of Computer Facilities Ralph Gorin suggested other configurations and initially funded the project. Graduate student Andy Bechtolsheim designed the hardware, with several other students and staff members assisting with software and other aspects of the project. Vaughan Pratt became unofficial faculty leader of the project in 1980.
Three key technologies made the SUN workstation possible: VLSI, Multibus and ECAD. ECAD (Electronic Computer Assisted Design, now known as Electronic design automation) allowed a single designer to quickly develop systems of greater complexity. The Stanford Artificial Intelligence Laboratory (SAIL) had pioneered personal display terminals, but the 1971 system was showing its age. Bechtolsheim used the Stanford University Drawing System (SUDS) to design the SUN boards on the SAIL system. SUDS had been originally developed for the Foonly computer. The Structured Computer Aided Logic Design (SCALD) package was then used to verify the design, automate layout and produce wire wrap prototypes and then printed circuit boards.