*** Welcome to piglix ***

SMT placement equipment


SMT (surface mount technology) component placement systems, commonly called pick-and-place machines or P&Ps, are robotic machines which are used to place surface-mount devices (SMDs) onto a printed circuit board (PCB). They are used for high speed, high precision placing of broad range of electronic components, like capacitors, resistors, integrated circuits onto the PCBs which are in turn used in computers, consumer electronics as well as industrial, medical, automotive, military and telecommunications equipment.

During this time, a typical SMT assembly line employed two different types of pick-and-place (P&P) machines arranged in sequence.

The unpopulated board was fed into a rapid placement machine. These machines, sometimes called chip shooters, place mainly low-precision, simple package components such as resistors and capacitors. These high-speed P&P machines were built around a single turret design capable of mounting up to two dozen stations. As the turret spins, the stations passing the back of the machine pick up parts from tape feeders mounted on a moving carriage. As the station proceeds around the turret, it passes an optical station that calculates the angle at which the part was picked up, allowing the machine to compensate for drift. Then, as the station reaches the front of the turret, the board is moved into the proper position, the nozzle is spun to put the part in proper angular orientation, and the part is placed on the board. Typical chip shooters can, under optimal conditions, place up to 53,000 parts per hour, or almost 15 parts per second.

Because the PCB is moved rather than the turret, only lightweight parts that will not be shaken loose by the violent motion of the PCB can be placed this way.

From the high speed machine, the board transits to a precision placement machine. These pick-and-place machines often use high resolution verification cameras and fine adjustment systems via high precision linear encoders on each axis to place parts more accurately than the high-speed machines. Furthermore, the precision placement machines are capable of handling larger or more irregularly shaped parts such as large package integrated circuits or packaged inductor coils and trimpots. Unlike the rapid placers, precision placers generally do not use turret mounted nozzles and instead rely on a gantry-supported moving head. These precision placers rely upon placement heads with relatively few pickup nozzles. The head sometimes has a laser identifier that scans a reflective marker on the PC Board to orient the head to the board. Parts are picked up from tape feeders or trays, scanned by a camera (on some machines), and then placed in the proper position on the board. Some machines also center the parts on the head with two arms that close to center the part; the head then rotates 90 degrees and the arms close again to center the part once more. The margin of error for some components is, in many cases, less than half a millimeter (less than 0.02 inches). The process is a little slower than rapid placement, necessitating careful line balancing when setting up a job, lest the precision placement machine become a production bottleneck.


...
Wikipedia

...