Calcium-activated SK potassium channel | |||||||||
---|---|---|---|---|---|---|---|---|---|
SK Channel
|
|||||||||
Identifiers | |||||||||
Symbol | SK_channel | ||||||||
Pfam | PF03530 | ||||||||
InterPro | IPR015449 | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
SK channels (Small conductance calcium-activated potassium channels) are a subfamily of Ca2+-activated K+ channels. They are so called because of their small single channel conductance in the order of 10 pS. SK channels are a type of ion channel allowing potassium cations to cross the cell membrane and are activated (opened) by an increase in the concentration of intracellular calcium through N-type calcium channels. Their activation limits the firing frequency of action potentials and is important for regulating afterhyperpolarization in the neurons of the central nervous system as well as many other types of electrically excitable cells. This is accomplished through the hyperpolarizing leak of positively charged potassium ions along their concentration gradient into the extracellular space. This hyperpolarization causes the membrane potential to become more negative. SK channels are thought to be involved in synaptic plasticity and therefore play important roles in learning and memory.
SK channels are expressed throughout the central nervous system. They are highly conserved in mammals as well as in other organisms such as Drosophila melanogaster and Caenorhabditis elegans. SK channels are specifically involved in the medium afterhyperpolarizing potential (mAHP). They affect both the intrinsic excitability of neurons and synaptic transmission. They are also involved in calcium signaling. SK channels control action potential discharge frequency in hippocampal neurons, midbrain dopaminergic neurons, dorsal vagal neurons, sympathetic neurons, nucleus reticularis thalmic neurons, inferior olive neurons, spinal and hypoglossal motoneurons, mitrial cells in the olfactory bulb, and cortical neurons.