The s-process or slow-neutron-capture-process is a nucleosynthesis process that occurs at relatively low neutron density and intermediate temperature conditions in stars. Under these conditions heavier nuclei are created by neutron capture, increasing the atomic mass of the nucleus by one. A neutron in the new nucleus decays by beta-minus decay to a proton, creating a nucleus of higher atomic number. The rate of neutron capture by atomic nuclei is slow relative to the rate of radioactive beta-minus decay, hence the name. Thus if beta decay can occur at all, it almost always occurs before another neutron can be captured. This process produces stable isotopes by moving along the valley of beta-decay stable isobars in the chart of isotopes. The s-process produces approximately half of the isotopes of the elements heavier than iron, and therefore plays an important role in the galactic chemical evolution. The more rapid r-process differs from the s-process by its faster rate of neutron capture of more than one neutron before beta-decay takes place.
The s-process was seen to be needed from the relative abundances of isotopes of heavy elements and from a newly published table of abundances by Hans Suess and Harold Urey in 1956. Among other things, these data showed abundance peaks for strontium, barium, and lead, which, according to quantum mechanics and the nuclear shell model, are particularly stable nuclei, much like the noble gases are chemically inert. This implied that some abundant nuclei must be created by slow neutron capture, and it was only a matter of determining how other nuclei could be accounted for by such a process. A table apportioning the heavy isotopes between s-process and r-process was published in the famous B2FH review paper in 1957. There it was also argued that the s-process occurs in red giant stars. In a particularly illustrative case, the element technetium, whose longest half-life is 4.2 million years, had been discovered in S-, M-, and N-type stars in 1952. Since these stars were thought to be billions of years old, the presence of technetium in their outer atmospheres was taken as evidence of its recent creation there, probably unconnected with the nuclear fusion in the deep interior of the star that provides its power.