*** Welcome to piglix ***

S-cobordism theorem


In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps

are homotopy equivalences.

The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder M × [0, 1]. Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds.

The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the Generalized Poincaré Conjecture.

Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases were even harder. The h-cobordism theorem showed that (simply connected) manifolds of dimension at least 5 are much easier than those of dimension 3 or 4. The proof of the theorem depends on the "Whitney trick" of Hassler Whitney, which geometrically untangles homologically-tangled spheres of complementary dimension in a manifold of dimension >4. An informal reason why manifolds of dimension 3 or 4 are unusually hard is that the trick fails to work in lower dimensions, which have no room for untanglement.

Let n be at least 5 and let W be a compact (n + 1)-dimensional h-cobordism between M and N in the category C=Diff, PL, or Top such that W, M and N are simply connected, then W is C-isomorphic to M × [0, 1]. The isomorphism can be chosen to be the identity on M × {0}.


...
Wikipedia

...