*** Welcome to piglix ***

Rupture (engineering)


A fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface of displacement, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially to the surface of displacement, it is called a shear crack, slip band, or dislocation.Fracture strength or breaking strength is the stress when a specimen fails or fractures.

The word fracture is often applied to bones of living creatures (i.e. a bone fracture), or to crystalline materials, such as gemstones or metal. Sometimes, individual crystals fracture without the structure actually separating into two or more pieces. Depending on the substance, a fracture reduces strength (most substances) or inhibits transmission of waves, such as light (optical crystals). A detailed understanding of how fracture occurs in materials may be assisted by the study of fracture mechanics.

Fracture strength, also known as breaking strength, is the stress at which a specimen fails via fracture. This is usually determined for a given specimen by a tensile test, which charts the stress-strain curve (see image). The final recorded point is the fracture strength.

Ductile materials have a fracture strength lower than the ultimate tensile strength (UTS), whereas in brittle materials the fracture strength is equivalent to the UTS. If a ductile material reaches its ultimate tensile strength in a load-controlled situation, it will continue to deform, with no additional load application, until it ruptures. However, if the loading is displacement-controlled, the deformation of the material may relieve the load, preventing rupture.


...
Wikipedia

...