The Rouché–Capelli theorem is a theorem in linear algebra that allows computing the number of solutions in a system of linear equations given the rank of its augmented matrix and coefficient matrix. The theorem is variously known as the:
A system of linear equations with n variables has a solution if and only if the rank of its coefficient matrix A is equal to the rank of its augmented matrix [A|b]. If there are solutions, they form an affine subspace of of dimension n − rank(A). In particular:
Consider the system of equations
The coefficient matrix is
and the augmented matrix is
Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are an infinite number of solutions.
In contrast, consider the system
The coefficient matrix is
and the augmented matrix is
In this example the coefficient matrix has rank 2 while the augmented matrix has rank 3; so this system of equations has no solution. Indeed, an increase in the number of linearly independent rows has made the system of equations inconsistent.