*** Welcome to piglix ***

Rotational kinetic energy


Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, the following dependence on the object's moment of inertia is observed:

where

The mechanical work required for / applied during rotation is the torque times the rotation angle. The instantaneous power of an angularly accelerating body is the torque times the angular velocity. For free-floating (unattached) objects, the axis of rotation is commonly around its center of mass.

Note the close relationship between the result for rotational energy and the energy held by linear (or translational) motion:

In the rotating system, the moment of inertia, I, takes the role of the mass, m, and the angular velocity, , takes the role of the linear velocity, v. The rotational energy of a rolling cylinder varies from one half of the translational energy (if it is massive) to the same as the translational energy (if it is hollow).

An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a period of about 23.93 hours, it has an angular velocity of 7.29×10−5 rad/s. The Earth has a moment of inertia, I = 8.04×1037 kg·m2. Therefore, it has a rotational kinetic energy of 2.138×1029 J.


...
Wikipedia

...