*** Welcome to piglix ***

Root of unity modulo n


In mathematics, namely ring theory, a k-th root of unity modulo n for positive integers k, n ≥ 2, is a solution x to the equation (or congruence) . If k is the smallest such exponent for x, then x is called a primitive k-th root of unity modulo n. See modular arithmetic for notation and terminology.

Do not confuse this with a Primitive root modulo n, where the primitive root must generate all units of the residue class ring by exponentiation. That is, there are always roots and primitive roots of unity modulo n for n ≥ 2, but for some n there is no primitive root modulo n. Being a root of unity or a primitive root of unity modulo n always depends on the exponent k and the modulus n, whereas being a primitive root modulo n only depends on the modulus n — the exponent is automatically .


...
Wikipedia

...