In mathematical finance, a risk-neutral measure (also called an equilibrium measure, or equivalent martingale measure) is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.
Prices of assets depend crucially on their risk as investors typically demand more profit for bearing more uncertainty. Therefore, today's price of a claim on a risky amount realised tomorrow will generally differ from its expected value. Most commonly, investors are risk-averse and today's price is below the expectation, remunerating those who bear the risk (at least in large financial markets; examples of risk-seeking markets are casinos and lotteries).
To price assets, consequently, the calculated expected values need to be adjusted for an investor's risk preferences (see also Sharpe ratio). Unfortunately, the discount rates would vary between investors and an individual's risk preference is difficult to quantify.
It turns out that in a complete market with no arbitrage opportunities there is an alternative way to do this calculation: Instead of first taking the expectation and then adjusting for an investor's risk preference, one can adjust, once and for all, the probabilities of future outcomes such that they incorporate all investors' risk premia, and then take the expectation under this new probability distribution, the risk-neutral measure. The main benefit stems from the fact that once the risk-neutral probabilities are found, every asset can be priced by simply taking the present value of its expected payoff. Note that if we used the actual real-world probabilities, every security would require a different adjustment (as they differ in riskiness).